Properties

Label 40310.49
Modulus $40310$
Conductor $20155$
Order $966$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(966)) M = H._module chi = DirichletCharacter(H, M([483,828,700]))
 
Copy content pari:[g,chi] = znchar(Mod(49,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(966\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(49,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.fq

\(\chi_{40310}(49,\cdot)\) \(\chi_{40310}(169,\cdot)\) \(\chi_{40310}(719,\cdot)\) \(\chi_{40310}(749,\cdot)\) \(\chi_{40310}(819,\cdot)\) \(\chi_{40310}(1039,\cdot)\) \(\chi_{40310}(1109,\cdot)\) \(\chi_{40310}(1329,\cdot)\) \(\chi_{40310}(1399,\cdot)\) \(\chi_{40310}(1649,\cdot)\) \(\chi_{40310}(1789,\cdot)\) \(\chi_{40310}(1959,\cdot)\) \(\chi_{40310}(2229,\cdot)\) \(\chi_{40310}(2249,\cdot)\) \(\chi_{40310}(2539,\cdot)\) \(\chi_{40310}(2809,\cdot)\) \(\chi_{40310}(2829,\cdot)\) \(\chi_{40310}(2849,\cdot)\) \(\chi_{40310}(2949,\cdot)\) \(\chi_{40310}(3039,\cdot)\) \(\chi_{40310}(3069,\cdot)\) \(\chi_{40310}(3099,\cdot)\) \(\chi_{40310}(3139,\cdot)\) \(\chi_{40310}(3529,\cdot)\) \(\chi_{40310}(3619,\cdot)\) \(\chi_{40310}(3649,\cdot)\) \(\chi_{40310}(3819,\cdot)\) \(\chi_{40310}(3939,\cdot)\) \(\chi_{40310}(4009,\cdot)\) \(\chi_{40310}(4109,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{483})$
Fixed field: Number field defined by a degree 966 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((-1,e\left(\frac{6}{7}\right),e\left(\frac{50}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(49, a) \) \(1\)\(1\)\(e\left(\frac{479}{966}\right)\)\(e\left(\frac{17}{966}\right)\)\(e\left(\frac{479}{483}\right)\)\(e\left(\frac{242}{483}\right)\)\(e\left(\frac{295}{966}\right)\)\(e\left(\frac{5}{138}\right)\)\(e\left(\frac{443}{483}\right)\)\(e\left(\frac{248}{483}\right)\)\(e\left(\frac{67}{322}\right)\)\(e\left(\frac{157}{322}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(49,a) \;\) at \(\;a = \) e.g. 2