Properties

Label 40310.41
Modulus $40310$
Conductor $4031$
Order $276$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(276)) M = H._module chi = DirichletCharacter(H, M([0,69,64]))
 
Copy content pari:[g,chi] = znchar(Mod(41,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(4031\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(276\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4031}(41,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.en

\(\chi_{40310}(41,\cdot)\) \(\chi_{40310}(1201,\cdot)\) \(\chi_{40310}(1781,\cdot)\) \(\chi_{40310}(1931,\cdot)\) \(\chi_{40310}(2221,\cdot)\) \(\chi_{40310}(2361,\cdot)\) \(\chi_{40310}(2511,\cdot)\) \(\chi_{40310}(3521,\cdot)\) \(\chi_{40310}(3961,\cdot)\) \(\chi_{40310}(4251,\cdot)\) \(\chi_{40310}(5121,\cdot)\) \(\chi_{40310}(5261,\cdot)\) \(\chi_{40310}(6571,\cdot)\) \(\chi_{40310}(7001,\cdot)\) \(\chi_{40310}(7731,\cdot)\) \(\chi_{40310}(8161,\cdot)\) \(\chi_{40310}(8601,\cdot)\) \(\chi_{40310}(9181,\cdot)\) \(\chi_{40310}(9611,\cdot)\) \(\chi_{40310}(9761,\cdot)\) \(\chi_{40310}(10631,\cdot)\) \(\chi_{40310}(12081,\cdot)\) \(\chi_{40310}(12801,\cdot)\) \(\chi_{40310}(12951,\cdot)\) \(\chi_{40310}(13091,\cdot)\) \(\chi_{40310}(13381,\cdot)\) \(\chi_{40310}(13671,\cdot)\) \(\chi_{40310}(15271,\cdot)\) \(\chi_{40310}(15411,\cdot)\) \(\chi_{40310}(15851,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{276})$
Fixed field: Number field defined by a degree 276 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((1,i,e\left(\frac{16}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(41, a) \) \(-1\)\(1\)\(e\left(\frac{209}{276}\right)\)\(e\left(\frac{41}{69}\right)\)\(e\left(\frac{71}{138}\right)\)\(e\left(\frac{241}{276}\right)\)\(e\left(\frac{47}{138}\right)\)\(e\left(\frac{17}{276}\right)\)\(e\left(\frac{109}{276}\right)\)\(e\left(\frac{97}{276}\right)\)\(e\left(\frac{6}{23}\right)\)\(e\left(\frac{25}{92}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(41,a) \;\) at \(\;a = \) e.g. 2