Properties

Label 40310.27
Modulus $40310$
Conductor $20155$
Order $644$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(644)) M = H._module chi = DirichletCharacter(H, M([161,345,574]))
 
Copy content pari:[g,chi] = znchar(Mod(27,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(644\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(27,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.fa

\(\chi_{40310}(27,\cdot)\) \(\chi_{40310}(317,\cdot)\) \(\chi_{40310}(337,\cdot)\) \(\chi_{40310}(583,\cdot)\) \(\chi_{40310}(867,\cdot)\) \(\chi_{40310}(873,\cdot)\) \(\chi_{40310}(967,\cdot)\) \(\chi_{40310}(1187,\cdot)\) \(\chi_{40310}(1207,\cdot)\) \(\chi_{40310}(1413,\cdot)\) \(\chi_{40310}(1423,\cdot)\) \(\chi_{40310}(1477,\cdot)\) \(\chi_{40310}(1493,\cdot)\) \(\chi_{40310}(1743,\cdot)\) \(\chi_{40310}(2033,\cdot)\) \(\chi_{40310}(2283,\cdot)\) \(\chi_{40310}(2357,\cdot)\) \(\chi_{40310}(2607,\cdot)\) \(\chi_{40310}(2803,\cdot)\) \(\chi_{40310}(2927,\cdot)\) \(\chi_{40310}(3153,\cdot)\) \(\chi_{40310}(3163,\cdot)\) \(\chi_{40310}(3483,\cdot)\) \(\chi_{40310}(3523,\cdot)\) \(\chi_{40310}(3673,\cdot)\) \(\chi_{40310}(3767,\cdot)\) \(\chi_{40310}(3813,\cdot)\) \(\chi_{40310}(4107,\cdot)\) \(\chi_{40310}(4303,\cdot)\) \(\chi_{40310}(4323,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{644})$
Fixed field: Number field defined by a degree 644 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((i,e\left(\frac{15}{28}\right),e\left(\frac{41}{46}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(27, a) \) \(-1\)\(1\)\(e\left(\frac{313}{322}\right)\)\(e\left(\frac{157}{644}\right)\)\(e\left(\frac{152}{161}\right)\)\(e\left(\frac{85}{644}\right)\)\(e\left(\frac{281}{644}\right)\)\(e\left(\frac{20}{23}\right)\)\(e\left(\frac{445}{644}\right)\)\(e\left(\frac{139}{644}\right)\)\(e\left(\frac{341}{644}\right)\)\(e\left(\frac{295}{322}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(27,a) \;\) at \(\;a = \) e.g. 2