Properties

Label 40310.23
Modulus $40310$
Conductor $20155$
Order $644$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(644)) M = H._module chi = DirichletCharacter(H, M([483,460,126]))
 
Copy content pari:[g,chi] = znchar(Mod(23,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(644\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(23,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.fg

\(\chi_{40310}(23,\cdot)\) \(\chi_{40310}(103,\cdot)\) \(\chi_{40310}(223,\cdot)\) \(\chi_{40310}(373,\cdot)\) \(\chi_{40310}(703,\cdot)\) \(\chi_{40310}(777,\cdot)\) \(\chi_{40310}(857,\cdot)\) \(\chi_{40310}(893,\cdot)\) \(\chi_{40310}(1067,\cdot)\) \(\chi_{40310}(1417,\cdot)\) \(\chi_{40310}(1707,\cdot)\) \(\chi_{40310}(1727,\cdot)\) \(\chi_{40310}(1763,\cdot)\) \(\chi_{40310}(2133,\cdot)\) \(\chi_{40310}(2257,\cdot)\) \(\chi_{40310}(2327,\cdot)\) \(\chi_{40310}(2373,\cdot)\) \(\chi_{40310}(2423,\cdot)\) \(\chi_{40310}(2577,\cdot)\) \(\chi_{40310}(2597,\cdot)\) \(\chi_{40310}(2717,\cdot)\) \(\chi_{40310}(2807,\cdot)\) \(\chi_{40310}(2867,\cdot)\) \(\chi_{40310}(3003,\cdot)\) \(\chi_{40310}(3097,\cdot)\) \(\chi_{40310}(3273,\cdot)\) \(\chi_{40310}(3967,\cdot)\) \(\chi_{40310}(3997,\cdot)\) \(\chi_{40310}(4113,\cdot)\) \(\chi_{40310}(4257,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{644})$
Fixed field: Number field defined by a degree 644 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((-i,e\left(\frac{5}{7}\right),e\left(\frac{9}{46}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(23, a) \) \(1\)\(1\)\(e\left(\frac{543}{644}\right)\)\(e\left(\frac{67}{644}\right)\)\(e\left(\frac{221}{322}\right)\)\(e\left(\frac{117}{161}\right)\)\(e\left(\frac{405}{644}\right)\)\(e\left(\frac{63}{92}\right)\)\(e\left(\frac{139}{161}\right)\)\(e\left(\frac{305}{322}\right)\)\(e\left(\frac{527}{644}\right)\)\(e\left(\frac{341}{644}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(23,a) \;\) at \(\;a = \) e.g. 2