Properties

Label 40310.17
Modulus $40310$
Conductor $20155$
Order $276$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40310, base_ring=CyclotomicField(276))
 
M = H._module
 
chi = DirichletCharacter(H, M([69,207,214]))
 
pari: [g,chi] = znchar(Mod(17,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(276\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(17,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 40310.ep

\(\chi_{40310}(17,\cdot)\) \(\chi_{40310}(273,\cdot)\) \(\chi_{40310}(853,\cdot)\) \(\chi_{40310}(887,\cdot)\) \(\chi_{40310}(2047,\cdot)\) \(\chi_{40310}(3173,\cdot)\) \(\chi_{40310}(3497,\cdot)\) \(\chi_{40310}(4043,\cdot)\) \(\chi_{40310}(4367,\cdot)\) \(\chi_{40310}(4657,\cdot)\) \(\chi_{40310}(5493,\cdot)\) \(\chi_{40310}(6107,\cdot)\) \(\chi_{40310}(6363,\cdot)\) \(\chi_{40310}(6397,\cdot)\) \(\chi_{40310}(6687,\cdot)\) \(\chi_{40310}(6943,\cdot)\) \(\chi_{40310}(7523,\cdot)\) \(\chi_{40310}(8393,\cdot)\) \(\chi_{40310}(9007,\cdot)\) \(\chi_{40310}(9297,\cdot)\) \(\chi_{40310}(9553,\cdot)\) \(\chi_{40310}(9587,\cdot)\) \(\chi_{40310}(10457,\cdot)\) \(\chi_{40310}(11003,\cdot)\) \(\chi_{40310}(11037,\cdot)\) \(\chi_{40310}(11327,\cdot)\) \(\chi_{40310}(11873,\cdot)\) \(\chi_{40310}(11907,\cdot)\) \(\chi_{40310}(12163,\cdot)\) \(\chi_{40310}(12197,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{276})$
Fixed field: Number field defined by a degree 276 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((i,-i,e\left(\frac{107}{138}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(17, a) \) \(-1\)\(1\)\(e\left(\frac{20}{69}\right)\)\(e\left(\frac{5}{276}\right)\)\(e\left(\frac{40}{69}\right)\)\(e\left(\frac{187}{276}\right)\)\(e\left(\frac{241}{276}\right)\)\(e\left(\frac{133}{138}\right)\)\(e\left(\frac{151}{276}\right)\)\(e\left(\frac{85}{276}\right)\)\(e\left(\frac{63}{92}\right)\)\(e\left(\frac{20}{23}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(17,a) \;\) at \(\;a = \) e.g. 2