sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(4030)
sage: chi = H[3833]
pari: [g,chi] = znchar(Mod(3833,4030))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 2015 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 60 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 4030.gk |
Orbit index | = | 167 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{4030}(293,\cdot)\) \(\chi_{4030}(617,\cdot)\) \(\chi_{4030}(813,\cdot)\) \(\chi_{4030}(847,\cdot)\) \(\chi_{4030}(1073,\cdot)\) \(\chi_{4030}(1103,\cdot)\) \(\chi_{4030}(1497,\cdot)\) \(\chi_{4030}(1657,\cdot)\) \(\chi_{4030}(2177,\cdot)\) \(\chi_{4030}(2273,\cdot)\) \(\chi_{4030}(2407,\cdot)\) \(\chi_{4030}(2437,\cdot)\) \(\chi_{4030}(2923,\cdot)\) \(\chi_{4030}(3283,\cdot)\) \(\chi_{4030}(3707,\cdot)\) \(\chi_{4030}(3833,\cdot)\)
Inducing primitive character
Values on generators
\((807,1861,2731)\) → \((-i,e\left(\frac{7}{12}\right),e\left(\frac{4}{15}\right))\)
Values
-1 | 1 | 3 | 7 | 9 | 11 | 17 | 19 | 21 | 23 | 27 | 29 |
\(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{60})\) |