Properties

Conductor 2015
Order 60
Real No
Primitive No
Parity Even
Orbit Label 4030.gu

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(4030)
 
sage: chi = H[23]
 
pari: [g,chi] = znchar(Mod(23,4030))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 2015
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 60
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 4030.gu
Orbit index = 177

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{4030}(23,\cdot)\) \(\chi_{4030}(147,\cdot)\) \(\chi_{4030}(153,\cdot)\) \(\chi_{4030}(277,\cdot)\) \(\chi_{4030}(387,\cdot)\) \(\chi_{4030}(647,\cdot)\) \(\chi_{4030}(953,\cdot)\) \(\chi_{4030}(1083,\cdot)\) \(\chi_{4030}(1193,\cdot)\) \(\chi_{4030}(1317,\cdot)\) \(\chi_{4030}(1453,\cdot)\) \(\chi_{4030}(1577,\cdot)\) \(\chi_{4030}(2123,\cdot)\) \(\chi_{4030}(2383,\cdot)\) \(\chi_{4030}(3247,\cdot)\) \(\chi_{4030}(3377,\cdot)\)

Inducing primitive character

\(\chi_{2015}(23,\cdot)\)

Values on generators

\((807,1861,2731)\) → \((-i,e\left(\frac{5}{6}\right),e\left(\frac{9}{10}\right))\)

Values

-1137911171921232729
\(1\)\(1\)\(e\left(\frac{29}{60}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{43}{60}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{14}{15}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{60})\)