Properties

Conductor 155
Order 4
Real No
Primitive No
Parity Even
Orbit Label 4030.q

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(4030)
sage: chi = H[2107]
pari: [g,chi] = znchar(Mod(2107,4030))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 155
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 4
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 4030.q
Orbit index = 17

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{4030}(2107,\cdot)\) \(\chi_{4030}(2913,\cdot)\)

Inducing primitive character

\(\chi_{155}(92,\cdot)\)

Values on generators

\((807,1861,2731)\) → \((i,1,-1)\)

Values

-1137911171921232729
\(1\)\(1\)\(i\)\(i\)\(-1\)\(-1\)\(-i\)\(-1\)\(-1\)\(i\)\(-i\)\(1\)
value at  e.g. 2

Related number fields

Field of values \(\Q(i)\)