sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(403, base_ring=CyclotomicField(6))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([4,0]))
pari: [g,chi] = znchar(Mod(373,403))
Basic properties
Modulus: | \(403\) | |
Conductor: | \(13\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(3\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{13}(9,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 403.f
\(\chi_{403}(94,\cdot)\) \(\chi_{403}(373,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\sqrt{-3}) \) |
Fixed field: | 3.3.169.1 |
Values on generators
\((249,313)\) → \((e\left(\frac{2}{3}\right),1)\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{403}(373,\cdot)) = \sum_{r\in \Z/403\Z} \chi_{403}(373,r) e\left(\frac{2r}{403}\right) = -2.565804281+-2.5331104184i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{403}(373,\cdot),\chi_{403}(1,\cdot)) = \sum_{r\in \Z/403\Z} \chi_{403}(373,r) \chi_{403}(1,1-r) = -29 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{403}(373,·))
= \sum_{r \in \Z/403\Z}
\chi_{403}(373,r) e\left(\frac{1 r + 2 r^{-1}}{403}\right)
= -5.0767677918+8.7932197536i \)