Properties

Label 403.131
Modulus $403$
Conductor $31$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(403, base_ring=CyclotomicField(30))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,28]))
 
pari: [g,chi] = znchar(Mod(131,403))
 

Basic properties

Modulus: \(403\)
Conductor: \(31\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{31}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 403.bi

\(\chi_{403}(14,\cdot)\) \(\chi_{403}(40,\cdot)\) \(\chi_{403}(131,\cdot)\) \(\chi_{403}(144,\cdot)\) \(\chi_{403}(183,\cdot)\) \(\chi_{403}(196,\cdot)\) \(\chi_{403}(235,\cdot)\) \(\chi_{403}(391,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: \(\Q(\zeta_{31})^+\)

Values on generators

\((249,313)\) → \((1,e\left(\frac{14}{15}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{7}{15}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 403 }(131,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{403}(131,\cdot)) = \sum_{r\in \Z/403\Z} \chi_{403}(131,r) e\left(\frac{2r}{403}\right) = -3.7347434063+4.1293694057i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 403 }(131,·),\chi_{ 403 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{403}(131,\cdot),\chi_{403}(1,\cdot)) = \sum_{r\in \Z/403\Z} \chi_{403}(131,r) \chi_{403}(1,1-r) = -11 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 403 }(131,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{403}(131,·)) = \sum_{r \in \Z/403\Z} \chi_{403}(131,r) e\left(\frac{1 r + 2 r^{-1}}{403}\right) = -5.7317739064+-17.6405861904i \)