Properties

Conductor 35
Order 6
Real No
Primitive No
Parity Odd
Orbit Label 4025.r

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(4025)
 
sage: chi = H[24]
 
pari: [g,chi] = znchar(Mod(24,4025))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 35
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 6
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 4025.r
Orbit index = 18

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{4025}(24,\cdot)\) \(\chi_{4025}(1174,\cdot)\)

Inducing primitive character

\(\chi_{35}(24,\cdot)\)

Values on generators

\((2577,1151,3501)\) → \((-1,e\left(\frac{1}{6}\right),1)\)

Values

-1123468911121316
\(-1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)