# Properties

 Conductor 35 Order 4 Real no Primitive no Minimal yes Parity even Orbit label 4025.k

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(4025)

sage: chi = H[2232]

pari: [g,chi] = znchar(Mod(2232,4025))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 35 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 4 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 4025.k Orbit index = 11

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(2577,1151,3501)$$ → $$(i,-1,1)$$

## Values

 -1 1 2 3 4 6 8 9 11 12 13 16 $$1$$ $$1$$ $$i$$ $$i$$ $$-1$$ $$-1$$ $$-i$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$1$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(i)$$