Properties

Label 4017.dp
Modulus $4017$
Conductor $4017$
Order $102$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(4017, base_ring=CyclotomicField(102))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([51,51,65]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(77,4017))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4017\)
Conductor: \(4017\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(102\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{4017}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{11}{102}\right)\)
\(\chi_{4017}(623,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{19}{102}\right)\)
\(\chi_{4017}(662,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{77}{102}\right)\)
\(\chi_{4017}(1013,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{55}{102}\right)\)
\(\chi_{4017}(1208,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{65}{102}\right)\)
\(\chi_{4017}(1247,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{37}{102}\right)\)
\(\chi_{4017}(1520,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{89}{102}\right)\)
\(\chi_{4017}(1598,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{7}{102}\right)\)
\(\chi_{4017}(1715,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{43}{102}\right)\)
\(\chi_{4017}(2027,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{13}{102}\right)\)
\(\chi_{4017}(2066,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{47}{102}\right)\)
\(\chi_{4017}(2105,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{73}{102}\right)\)
\(\chi_{4017}(2144,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{41}{102}\right)\)
\(\chi_{4017}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{59}{102}\right)\)
\(\chi_{4017}(2417,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{5}{102}\right)\)
\(\chi_{4017}(2456,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{29}{102}\right)\)
\(\chi_{4017}(2534,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{83}{102}\right)\)
\(\chi_{4017}(2573,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{71}{102}\right)\)
\(\chi_{4017}(2690,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{67}{102}\right)\)
\(\chi_{4017}(2729,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{31}{102}\right)\)
\(\chi_{4017}(2846,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{61}{102}\right)\)
\(\chi_{4017}(2924,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{79}{102}\right)\)
\(\chi_{4017}(3041,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{101}{102}\right)\)
\(\chi_{4017}(3236,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{35}{102}\right)\)
\(\chi_{4017}(3392,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{25}{102}\right)\)
\(\chi_{4017}(3470,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{49}{102}\right)\)
\(\chi_{4017}(3587,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{23}{102}\right)\)
\(\chi_{4017}(3626,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{1}{102}\right)\)
\(\chi_{4017}(3704,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{91}{102}\right)\)
\(\chi_{4017}(3743,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{95}{102}\right)\)
\(\chi_{4017}(3782,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{53}{102}\right)\)