# Properties

 Modulus 4008 Conductor 167 Order 83 Real no Primitive no Minimal yes Parity even Orbit label 4008.q

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4008)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,0,35]))

pari: [g,chi] = znchar(Mod(49,4008))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 4008 Conductor = 167 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 83 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 4008.q Orbit index = 17

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(3007,2005,1337,673)$$ → $$(1,1,1,e\left(\frac{35}{83}\right))$$

## Values

 -1 1 5 7 11 13 17 19 23 25 29 31 $$1$$ $$1$$ $$e\left(\frac{35}{83}\right)$$ $$e\left(\frac{63}{83}\right)$$ $$e\left(\frac{67}{83}\right)$$ $$e\left(\frac{36}{83}\right)$$ $$e\left(\frac{29}{83}\right)$$ $$e\left(\frac{38}{83}\right)$$ $$e\left(\frac{62}{83}\right)$$ $$e\left(\frac{70}{83}\right)$$ $$e\left(\frac{21}{83}\right)$$ $$e\left(\frac{79}{83}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{83})$$