# Properties

 Label 4008.133 Modulus $4008$ Conductor $1336$ Order $166$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4008)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,83,0,10]))

pari: [g,chi] = znchar(Mod(133,4008))

## Basic properties

 Modulus: $$4008$$ Conductor: $$1336$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$166$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{1336}(133,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 4008.bb

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(3007,2005,1337,673)$$ → $$(1,-1,1,e\left(\frac{5}{83}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{93}{166}\right)$$ $$e\left(\frac{9}{83}\right)$$ $$e\left(\frac{31}{166}\right)$$ $$e\left(\frac{117}{166}\right)$$ $$e\left(\frac{16}{83}\right)$$ $$e\left(\frac{165}{166}\right)$$ $$e\left(\frac{80}{83}\right)$$ $$e\left(\frac{10}{83}\right)$$ $$e\left(\frac{89}{166}\right)$$ $$e\left(\frac{35}{83}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $\Q(\zeta_{83})$ Fixed field: Number field defined by a degree 166 polynomial