# Properties

 Label 400.f Modulus $400$ Conductor $40$ Order $2$ Real yes Primitive no Minimal no Parity even

# Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(400, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([0,1,1]))

chi.galois_orbit()

[g,chi] = znchar(Mod(249,400))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$400$$ Conductor: $$40$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from 40.f sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{10})$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$21$$ $$23$$ $$27$$
$$\chi_{400}(249,\cdot)$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$