Properties

Label 40.37
Modulus $40$
Conductor $40$
Order $4$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(40, base_ring=CyclotomicField(4))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,2,1]))
 
pari: [g,chi] = znchar(Mod(37,40))
 

Basic properties

Modulus: \(40\)
Conductor: \(40\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 40.i

\(\chi_{40}(13,\cdot)\) \(\chi_{40}(37,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: 4.0.8000.2

Values on generators

\((31,21,17)\) → \((1,-1,i)\)

Values

\(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\(-1\)\(1\)\(i\)\(i\)\(-1\)\(-1\)\(i\)\(i\)\(1\)\(-1\)\(-i\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 40 }(37,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 40 }(37,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 40 }(37,·),\chi_{ 40 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 40 }(37,·)) \;\) at \(\; a,b = \) e.g. 1,2