Properties

Label 3920.fx
Modulus $3920$
Conductor $245$
Order $84$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3920, base_ring=CyclotomicField(84))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,21,50]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(17,3920))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3920\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 245.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{3920}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(33,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(257,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(353,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(577,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(593,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(817,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(1137,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(1153,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(1377,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(1473,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(1713,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(1937,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(2033,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(2257,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(2497,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(2593,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(2817,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(2833,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(3153,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(3377,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{3920}(3393,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(3617,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{3920}(3713,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{6}\right)\)