Properties

Label 3920.ec
Modulus $3920$
Conductor $3920$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3920, base_ring=CyclotomicField(28))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,7,14,26]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(69,3920))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3920\)
Conductor: \(3920\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.0.1658791218361497301089292178042702471550650476745587455898419200000000000000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{3920}(69,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(i\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(-1\)
\(\chi_{3920}(349,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(-i\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(-1\)
\(\chi_{3920}(629,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(i\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(-1\)
\(\chi_{3920}(909,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(-i\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(-1\)
\(\chi_{3920}(1189,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(i\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(-1\)
\(\chi_{3920}(1749,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(i\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(-1\)
\(\chi_{3920}(2029,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(-i\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(-1\)
\(\chi_{3920}(2309,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(i\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(-1\)
\(\chi_{3920}(2589,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(-i\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(-1\)
\(\chi_{3920}(2869,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(i\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(-1\)
\(\chi_{3920}(3149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(-i\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(-1\)
\(\chi_{3920}(3709,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(-i\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(-1\)