Properties

Label 3920.1721
Modulus $3920$
Conductor $392$
Order $14$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,0,9]))
 
pari: [g,chi] = znchar(Mod(1721,3920))
 

Basic properties

Modulus: \(3920\)
Conductor: \(392\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{392}(349,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3920.dh

\(\chi_{3920}(41,\cdot)\) \(\chi_{3920}(601,\cdot)\) \(\chi_{3920}(1161,\cdot)\) \(\chi_{3920}(1721,\cdot)\) \(\chi_{3920}(2281,\cdot)\) \(\chi_{3920}(3401,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.2812424737865523319657201664.1

Values on generators

\((1471,981,3137,3041)\) → \((1,-1,1,e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 3920 }(1721, a) \) \(-1\)\(1\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3920 }(1721,a) \;\) at \(\;a = \) e.g. 2