Properties

Label 3920.93
Modulus $3920$
Conductor $3920$
Order $84$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3920, base_ring=CyclotomicField(84))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,63,63,16]))
 
pari: [g,chi] = znchar(Mod(93,3920))
 

Basic properties

Modulus: \(3920\)
Conductor: \(3920\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3920.fi

\(\chi_{3920}(37,\cdot)\) \(\chi_{3920}(93,\cdot)\) \(\chi_{3920}(277,\cdot)\) \(\chi_{3920}(333,\cdot)\) \(\chi_{3920}(597,\cdot)\) \(\chi_{3920}(653,\cdot)\) \(\chi_{3920}(837,\cdot)\) \(\chi_{3920}(893,\cdot)\) \(\chi_{3920}(1213,\cdot)\) \(\chi_{3920}(1397,\cdot)\) \(\chi_{3920}(1453,\cdot)\) \(\chi_{3920}(1717,\cdot)\) \(\chi_{3920}(1773,\cdot)\) \(\chi_{3920}(1957,\cdot)\) \(\chi_{3920}(2013,\cdot)\) \(\chi_{3920}(2277,\cdot)\) \(\chi_{3920}(2573,\cdot)\) \(\chi_{3920}(2837,\cdot)\) \(\chi_{3920}(2893,\cdot)\) \(\chi_{3920}(3077,\cdot)\) \(\chi_{3920}(3133,\cdot)\) \(\chi_{3920}(3397,\cdot)\) \(\chi_{3920}(3453,\cdot)\) \(\chi_{3920}(3637,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((1471,981,3137,3041)\) → \((1,-i,-i,e\left(\frac{4}{21}\right))\)

Values

\(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\(-1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{31}{84}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{43}{84}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{83}{84}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2