# Properties

 Label 3920.3487 Modulus $3920$ Conductor $980$ Order $28$ Real no Primitive no Minimal yes Parity even

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3920, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([14,0,7,24]))

pari: [g,chi] = znchar(Mod(3487,3920))

## Basic properties

 Modulus: $$3920$$ Conductor: $$980$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{980}(547,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 3920.em

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: 28.28.4698031131813648056477467012100308504166528000000000000000000000.1

## Values on generators

$$(1471,981,3137,3041)$$ → $$(-1,1,i,e\left(\frac{6}{7}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$1$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$-1$$
 value at e.g. 2