# Properties

 Label 3920.33 Modulus $3920$ Conductor $245$ Order $84$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3920, base_ring=CyclotomicField(84))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,63,82]))

pari: [g,chi] = znchar(Mod(33,3920))

## Basic properties

 Modulus: $$3920$$ Conductor: $$245$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$84$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{245}(33,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 3920.fx

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $\Q(\zeta_{84})$ Fixed field: Number field defined by a degree 84 polynomial

## Values on generators

$$(1471,981,3137,3041)$$ → $$(1,1,-i,e\left(\frac{41}{42}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{5}{6}\right)$$
 value at e.g. 2