Properties

Label 3920.169
Modulus $3920$
Conductor $1960$
Order $14$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3920, base_ring=CyclotomicField(14))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,7,7,8]))
 
pari: [g,chi] = znchar(Mod(169,3920))
 

Basic properties

Modulus: \(3920\)
Conductor: \(1960\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1960}(1149,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3920.dg

\(\chi_{3920}(169,\cdot)\) \(\chi_{3920}(729,\cdot)\) \(\chi_{3920}(1289,\cdot)\) \(\chi_{3920}(1849,\cdot)\) \(\chi_{3920}(2409,\cdot)\) \(\chi_{3920}(2969,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.31388668949392001335459840000000.1

Values on generators

\((1471,981,3137,3041)\) → \((1,-1,-1,e\left(\frac{4}{7}\right))\)

Values

\(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(-1\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(1\)
value at e.g. 2