sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(392, base_ring=CyclotomicField(14))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,7,13]))
pari: [g,chi] = znchar(Mod(69,392))
Basic properties
Modulus: | \(392\) | |
Conductor: | \(392\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 392.r
\(\chi_{392}(13,\cdot)\) \(\chi_{392}(69,\cdot)\) \(\chi_{392}(125,\cdot)\) \(\chi_{392}(181,\cdot)\) \(\chi_{392}(237,\cdot)\) \(\chi_{392}(349,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.0.2812424737865523319657201664.1 |
Values on generators
\((295,197,297)\) → \((1,-1,e\left(\frac{13}{14}\right))\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\(-1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{392}(69,\cdot)) = \sum_{r\in \Z/392\Z} \chi_{392}(69,r) e\left(\frac{r}{196}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{392}(69,\cdot),\chi_{392}(1,\cdot)) = \sum_{r\in \Z/392\Z} \chi_{392}(69,r) \chi_{392}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{392}(69,·))
= \sum_{r \in \Z/392\Z}
\chi_{392}(69,r) e\left(\frac{1 r + 2 r^{-1}}{392}\right)
= 0.0 \)