# Properties

 Label 392.121 Modulus $392$ Conductor $49$ Order $21$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(392, base_ring=CyclotomicField(42))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,38]))

pari: [g,chi] = znchar(Mod(121,392))

## Basic properties

 Modulus: $$392$$ Conductor: $$49$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$21$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{49}(23,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 392.y

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{21})$$ Fixed field: $$\Q(\zeta_{49})^+$$

## Values on generators

$$(295,197,297)$$ → $$(1,1,e\left(\frac{19}{21}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$19$$ $$23$$ $$25$$ $$1$$ $$1$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{10}{21}\right)$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 392 }(121,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{392}(121,\cdot)) = \sum_{r\in \Z/392\Z} \chi_{392}(121,r) e\left(\frac{r}{196}\right) = 0.0$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 392 }(121,·),\chi_{ 392 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{392}(121,\cdot),\chi_{392}(1,\cdot)) = \sum_{r\in \Z/392\Z} \chi_{392}(121,r) \chi_{392}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 392 }(121,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{392}(121,·)) = \sum_{r \in \Z/392\Z} \chi_{392}(121,r) e\left(\frac{1 r + 2 r^{-1}}{392}\right) = -0.0$$