Properties

Label 390.p
Modulus $390$
Conductor $39$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,0,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(161,390))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(390\)
Conductor: \(39\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 39.f
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.19773.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{390}(161,\cdot)\) \(1\) \(1\) \(i\) \(-i\) \(1\) \(-i\) \(1\) \(-1\) \(-i\) \(i\) \(i\) \(-1\)
\(\chi_{390}(281,\cdot)\) \(1\) \(1\) \(-i\) \(i\) \(1\) \(i\) \(1\) \(-1\) \(i\) \(-i\) \(-i\) \(-1\)