Properties

Label 387.4
Modulus $387$
Conductor $387$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(387, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,12]))
 
pari: [g,chi] = znchar(Mod(4,387))
 

Basic properties

Modulus: \(387\)
Conductor: \(387\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 387.ba

\(\chi_{387}(4,\cdot)\) \(\chi_{387}(16,\cdot)\) \(\chi_{387}(97,\cdot)\) \(\chi_{387}(121,\cdot)\) \(\chi_{387}(133,\cdot)\) \(\chi_{387}(193,\cdot)\) \(\chi_{387}(250,\cdot)\) \(\chi_{387}(256,\cdot)\) \(\chi_{387}(274,\cdot)\) \(\chi_{387}(322,\cdot)\) \(\chi_{387}(355,\cdot)\) \(\chi_{387}(385,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((173,46)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 387 }(4, a) \) \(1\)\(1\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{4}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 387 }(4,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 387 }(4,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 387 }(4,·),\chi_{ 387 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 387 }(4,·)) \;\) at \(\; a,b = \) e.g. 1,2