Properties

Label 384.m
Modulus $384$
Conductor $32$
Order $8$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(384, base_ring=CyclotomicField(8))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([4,5,0]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(79,384))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(384\)
Conductor: \(32\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 32.h
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.2147483648.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{384}(79,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(-1\)
\(\chi_{384}(175,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(-1\)
\(\chi_{384}(271,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(-1\)
\(\chi_{384}(367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(-1\)