sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(384, base_ring=CyclotomicField(32))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,23,16]))
pari: [g,chi] = znchar(Mod(365,384))
Basic properties
Modulus: | \(384\) | |
Conductor: | \(384\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(32\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 384.x
\(\chi_{384}(5,\cdot)\) \(\chi_{384}(29,\cdot)\) \(\chi_{384}(53,\cdot)\) \(\chi_{384}(77,\cdot)\) \(\chi_{384}(101,\cdot)\) \(\chi_{384}(125,\cdot)\) \(\chi_{384}(149,\cdot)\) \(\chi_{384}(173,\cdot)\) \(\chi_{384}(197,\cdot)\) \(\chi_{384}(221,\cdot)\) \(\chi_{384}(245,\cdot)\) \(\chi_{384}(269,\cdot)\) \(\chi_{384}(293,\cdot)\) \(\chi_{384}(317,\cdot)\) \(\chi_{384}(341,\cdot)\) \(\chi_{384}(365,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{32})\) |
Fixed field: | 32.0.135104323545903136978453058557785670637514001130337144105502507008.1 |
Values on generators
\((127,133,257)\) → \((1,e\left(\frac{23}{32}\right),-1)\)
Values
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\(-1\) | \(1\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(-i\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{384}(365,\cdot)) = \sum_{r\in \Z/384\Z} \chi_{384}(365,r) e\left(\frac{r}{192}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{384}(365,\cdot),\chi_{384}(1,\cdot)) = \sum_{r\in \Z/384\Z} \chi_{384}(365,r) \chi_{384}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{384}(365,·))
= \sum_{r \in \Z/384\Z}
\chi_{384}(365,r) e\left(\frac{1 r + 2 r^{-1}}{384}\right)
= -0.0 \)