sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(384, base_ring=CyclotomicField(32))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([16,23,0]))
pari: [g,chi] = znchar(Mod(19,384))
Basic properties
Modulus: | \(384\) | |
Conductor: | \(128\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(32\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{128}(19,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 384.u
\(\chi_{384}(19,\cdot)\) \(\chi_{384}(43,\cdot)\) \(\chi_{384}(67,\cdot)\) \(\chi_{384}(91,\cdot)\) \(\chi_{384}(115,\cdot)\) \(\chi_{384}(139,\cdot)\) \(\chi_{384}(163,\cdot)\) \(\chi_{384}(187,\cdot)\) \(\chi_{384}(211,\cdot)\) \(\chi_{384}(235,\cdot)\) \(\chi_{384}(259,\cdot)\) \(\chi_{384}(283,\cdot)\) \(\chi_{384}(307,\cdot)\) \(\chi_{384}(331,\cdot)\) \(\chi_{384}(355,\cdot)\) \(\chi_{384}(379,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{32})\) |
Fixed field: | 32.0.3138550867693340381917894711603833208051177722232017256448.1 |
Values on generators
\((127,133,257)\) → \((-1,e\left(\frac{23}{32}\right),1)\)
Values
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\(-1\) | \(1\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{19}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(i\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{384}(19,\cdot)) = \sum_{r\in \Z/384\Z} \chi_{384}(19,r) e\left(\frac{r}{192}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{384}(19,\cdot),\chi_{384}(1,\cdot)) = \sum_{r\in \Z/384\Z} \chi_{384}(19,r) \chi_{384}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{384}(19,·))
= \sum_{r \in \Z/384\Z}
\chi_{384}(19,r) e\left(\frac{1 r + 2 r^{-1}}{384}\right)
= -9.6744673887+-20.4549426972i \)