Properties

Modulus 38025
Structure \(C_{780}\times C_{12}\times C_{2}\)
Order 18720

Learn more about

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(38025)
 
pari: g = idealstar(,38025,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 18720
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{780}\times C_{12}\times C_{2}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{38025}(24338,\cdot)$, $\chi_{38025}(10118,\cdot)$, $\chi_{38025}(36674,\cdot)$

First 37 of 18720 characters

Each row describes a character. When available, the columns show the order of the character, whether the character is primitive, and several values of the character.

order primitive 1 2 4 7 8 11 14 16 17 19 22 23 28 29 31 32 34 37 38 41 43 44 46 47 49 53 56 58 59 61
\(\chi_{38025}(1,\cdot)\) 1 no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\(\chi_{38025}(2,\cdot)\) 780 yes 1 \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{163}{260}\right)\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{67}{780}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{19}{390}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{677}{780}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{241}{780}\right)\) \(e\left(\frac{163}{390}\right)\) \(e\left(\frac{421}{780}\right)\) \(e\left(\frac{451}{780}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{19}{260}\right)\) \(e\left(\frac{343}{780}\right)\) \(e\left(\frac{82}{195}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{53}{195}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{197}{260}\right)\) \(e\left(\frac{71}{195}\right)\)
\(\chi_{38025}(4,\cdot)\) 390 yes 1 \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{163}{195}\right)\) \(e\left(\frac{31}{390}\right)\) \(e\left(\frac{61}{390}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{343}{390}\right)\) \(e\left(\frac{164}{195}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{106}{195}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{142}{195}\right)\)
\(\chi_{38025}(7,\cdot)\) 156 no 1 \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{38025}(8,\cdot)\) 260 no 1 \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{229}{260}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{67}{260}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{157}{260}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{57}{260}\right)\) \(e\left(\frac{83}{260}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{223}{260}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{71}{260}\right)\) \(e\left(\frac{6}{65}\right)\)
\(\chi_{38025}(11,\cdot)\) 780 yes 1 \(e\left(\frac{163}{260}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{229}{260}\right)\) \(e\left(\frac{253}{260}\right)\) \(e\left(\frac{367}{390}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{58}{195}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{443}{780}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{467}{780}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{721}{780}\right)\) \(e\left(\frac{701}{780}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{121}{780}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{59}{260}\right)\) \(e\left(\frac{73}{780}\right)\) \(e\left(\frac{283}{780}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{38}{195}\right)\) \(e\left(\frac{209}{260}\right)\) \(e\left(\frac{37}{260}\right)\) \(e\left(\frac{176}{195}\right)\)
\(\chi_{38025}(14,\cdot)\) 390 yes 1 \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{367}{390}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{49}{390}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{44}{195}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{107}{195}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{151}{390}\right)\) \(e\left(\frac{371}{390}\right)\) \(e\left(\frac{233}{390}\right)\) \(e\left(\frac{11}{195}\right)\)
\(\chi_{38025}(16,\cdot)\) 195 yes 1 \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{67}{195}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{38}{195}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{92}{195}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{131}{195}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{61}{195}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{133}{195}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{89}{195}\right)\)
\(\chi_{38025}(17,\cdot)\) 780 no 1 \(e\left(\frac{67}{780}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{67}{260}\right)\) \(e\left(\frac{58}{195}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{67}{195}\right)\) \(e\left(\frac{461}{780}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{439}{780}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{133}{780}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{157}{390}\right)\) \(e\left(\frac{133}{260}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{93}{260}\right)\) \(e\left(\frac{253}{390}\right)\) \(e\left(\frac{251}{780}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{83}{195}\right)\)
\(\chi_{38025}(19,\cdot)\) 60 no 1 \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{38025}(22,\cdot)\) 60 no 1 \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(i\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{38025}(23,\cdot)\) 60 no 1 \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(-1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{38025}(28,\cdot)\) 780 no 1 \(e\left(\frac{19}{390}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{443}{780}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{38}{195}\right)\) \(e\left(\frac{439}{780}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{119}{195}\right)\) \(e\left(\frac{253}{390}\right)\) \(e\left(\frac{123}{260}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{159}{260}\right)\) \(e\left(\frac{128}{195}\right)\) \(e\left(\frac{199}{260}\right)\) \(e\left(\frac{617}{780}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{173}{260}\right)\) \(e\left(\frac{571}{780}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{77}{260}\right)\) \(e\left(\frac{257}{390}\right)\) \(e\left(\frac{136}{195}\right)\) \(e\left(\frac{277}{780}\right)\) \(e\left(\frac{82}{195}\right)\)
\(\chi_{38025}(29,\cdot)\) 390 yes 1 \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{49}{390}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{253}{390}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{101}{195}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{193}{195}\right)\) \(e\left(\frac{11}{390}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{4}{195}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{32}{195}\right)\)
\(\chi_{38025}(31,\cdot)\) 780 yes 1 \(e\left(\frac{677}{780}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{157}{260}\right)\) \(e\left(\frac{467}{780}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{92}{195}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{123}{260}\right)\) \(e\left(\frac{101}{195}\right)\) \(e\left(\frac{541}{780}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{563}{780}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{319}{390}\right)\) \(e\left(\frac{553}{780}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{87}{260}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{479}{780}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{301}{780}\right)\) \(e\left(\frac{763}{780}\right)\) \(e\left(\frac{113}{195}\right)\)
\(\chi_{38025}(32,\cdot)\) 156 no 1 \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{38025}(34,\cdot)\) 780 yes 1 \(e\left(\frac{241}{780}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{721}{780}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{159}{260}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{563}{780}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{769}{780}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{179}{780}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{141}{260}\right)\) \(e\left(\frac{219}{260}\right)\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{359}{390}\right)\) \(e\left(\frac{53}{780}\right)\) \(e\left(\frac{89}{780}\right)\) \(e\left(\frac{154}{195}\right)\)
\(\chi_{38025}(37,\cdot)\) 780 no 1 \(e\left(\frac{163}{390}\right)\) \(e\left(\frac{163}{195}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{701}{780}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{131}{195}\right)\) \(e\left(\frac{133}{780}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{128}{195}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{41}{195}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{59}{780}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{157}{780}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{79}{260}\right)\) \(e\left(\frac{29}{390}\right)\) \(e\left(\frac{7}{195}\right)\) \(e\left(\frac{139}{780}\right)\) \(e\left(\frac{139}{195}\right)\)
\(\chi_{38025}(38,\cdot)\) 780 yes 1 \(e\left(\frac{421}{780}\right)\) \(e\left(\frac{31}{390}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{44}{195}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{199}{260}\right)\) \(e\left(\frac{193}{195}\right)\) \(e\left(\frac{319}{390}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{109}{780}\right)\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{757}{780}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{239}{260}\right)\) \(e\left(\frac{119}{390}\right)\) \(e\left(\frac{413}{780}\right)\) \(e\left(\frac{367}{390}\right)\) \(e\left(\frac{19}{195}\right)\)
\(\chi_{38025}(41,\cdot)\) 780 yes 1 \(e\left(\frac{451}{780}\right)\) \(e\left(\frac{61}{390}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{121}{780}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{61}{195}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{617}{780}\right)\) \(e\left(\frac{11}{390}\right)\) \(e\left(\frac{553}{780}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{179}{780}\right)\) \(e\left(\frac{59}{780}\right)\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{73}{260}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{81}{260}\right)\) \(e\left(\frac{607}{780}\right)\) \(e\left(\frac{437}{780}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{473}{780}\right)\) \(e\left(\frac{29}{780}\right)\) \(e\left(\frac{53}{65}\right)\)
\(\chi_{38025}(43,\cdot)\) 156 no 1 \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{38025}(44,\cdot)\) 260 no 1 \(e\left(\frac{19}{260}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{57}{260}\right)\) \(e\left(\frac{59}{260}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{173}{260}\right)\) \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{87}{260}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{141}{260}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{81}{260}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{97}{260}\right)\) \(e\left(\frac{253}{260}\right)\) \(e\left(\frac{53}{260}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{77}{260}\right)\) \(e\left(\frac{171}{260}\right)\) \(e\left(\frac{41}{65}\right)\)
\(\chi_{38025}(46,\cdot)\) 780 no 1 \(e\left(\frac{343}{780}\right)\) \(e\left(\frac{343}{390}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{83}{260}\right)\) \(e\left(\frac{73}{780}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{157}{390}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{571}{780}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{219}{260}\right)\) \(e\left(\frac{157}{780}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{607}{780}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{253}{260}\right)\) \(e\left(\frac{161}{780}\right)\) \(e\left(\frac{27}{260}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{179}{780}\right)\) \(e\left(\frac{617}{780}\right)\) \(e\left(\frac{32}{195}\right)\)
\(\chi_{38025}(47,\cdot)\) 780 yes 1 \(e\left(\frac{82}{195}\right)\) \(e\left(\frac{164}{195}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{283}{780}\right)\) \(e\left(\frac{107}{195}\right)\) \(e\left(\frac{133}{195}\right)\) \(e\left(\frac{133}{260}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{4}{195}\right)\) \(e\left(\frac{479}{780}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{757}{780}\right)\) \(e\left(\frac{437}{780}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{53}{260}\right)\) \(e\left(\frac{27}{260}\right)\) \(e\left(\frac{23}{390}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{237}{260}\right)\) \(e\left(\frac{76}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{677}{780}\right)\) \(e\left(\frac{157}{195}\right)\)
\(\chi_{38025}(49,\cdot)\) 78 no 1 \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{38025}(53,\cdot)\) 260 no 1 \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{223}{260}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{93}{260}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{77}{260}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{79}{260}\right)\) \(e\left(\frac{239}{260}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{237}{260}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{67}{260}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{19}{65}\right)\)
\(\chi_{38025}(56,\cdot)\) 390 yes 1 \(e\left(\frac{53}{195}\right)\) \(e\left(\frac{106}{195}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{38}{195}\right)\) \(e\left(\frac{151}{390}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{253}{390}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{257}{390}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{359}{390}\right)\) \(e\left(\frac{29}{390}\right)\) \(e\left(\frac{119}{390}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{76}{195}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{121}{130}\right)\) \(e\left(\frac{173}{390}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{51}{65}\right)\)
\(\chi_{38025}(58,\cdot)\) 780 yes 1 \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{209}{260}\right)\) \(e\left(\frac{371}{390}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{251}{780}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{136}{195}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{301}{780}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{780}\right)\) \(e\left(\frac{7}{195}\right)\) \(e\left(\frac{413}{780}\right)\) \(e\left(\frac{473}{780}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{77}{260}\right)\) \(e\left(\frac{179}{780}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{173}{390}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{251}{260}\right)\) \(e\left(\frac{103}{195}\right)\)
\(\chi_{38025}(59,\cdot)\) 780 yes 1 \(e\left(\frac{197}{260}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{71}{260}\right)\) \(e\left(\frac{37}{260}\right)\) \(e\left(\frac{233}{390}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{277}{780}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{763}{780}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{89}{780}\right)\) \(e\left(\frac{139}{780}\right)\) \(e\left(\frac{367}{390}\right)\) \(e\left(\frac{29}{780}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{171}{260}\right)\) \(e\left(\frac{617}{780}\right)\) \(e\left(\frac{677}{780}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{251}{260}\right)\) \(e\left(\frac{213}{260}\right)\) \(e\left(\frac{184}{195}\right)\)
\(\chi_{38025}(61,\cdot)\) 195 yes 1 \(e\left(\frac{71}{195}\right)\) \(e\left(\frac{142}{195}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{176}{195}\right)\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{89}{195}\right)\) \(e\left(\frac{83}{195}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{82}{195}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{139}{195}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{157}{195}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{103}{195}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{7}{65}\right)\)
\(\chi_{38025}(62,\cdot)\) 780 no 1 \(e\left(\frac{71}{780}\right)\) \(e\left(\frac{71}{390}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{71}{260}\right)\) \(e\left(\frac{44}{195}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{71}{195}\right)\) \(e\left(\frac{733}{780}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{407}{780}\right)\) \(e\left(\frac{8}{195}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{269}{780}\right)\) \(e\left(\frac{93}{260}\right)\) \(e\left(\frac{56}{195}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{341}{390}\right)\) \(e\left(\frac{9}{260}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{149}{260}\right)\) \(e\left(\frac{239}{390}\right)\) \(e\left(\frac{103}{780}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{184}{195}\right)\)
\(\chi_{38025}(64,\cdot)\) 130 no 1 \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{12}{65}\right)\)
\(\chi_{38025}(67,\cdot)\) 780 yes 1 \(e\left(\frac{43}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{127}{780}\right)\) \(e\left(\frac{71}{390}\right)\) \(e\left(\frac{172}{195}\right)\) \(e\left(\frac{61}{780}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{157}{390}\right)\) \(e\left(\frac{47}{390}\right)\) \(e\left(\frac{661}{780}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{233}{780}\right)\) \(e\left(\frac{259}{390}\right)\) \(e\left(\frac{263}{780}\right)\) \(e\left(\frac{111}{260}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{157}{260}\right)\) \(e\left(\frac{679}{780}\right)\) \(e\left(\frac{127}{390}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{260}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{53}{780}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{38025}(68,\cdot)\) 156 no 1 \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{38025}(71,\cdot)\) 780 no 1 \(e\left(\frac{763}{780}\right)\) \(e\left(\frac{373}{390}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{243}{260}\right)\) \(e\left(\frac{433}{780}\right)\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{178}{195}\right)\) \(e\left(\frac{101}{195}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{721}{780}\right)\) \(e\left(\frac{323}{390}\right)\) \(e\left(\frac{63}{260}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{129}{260}\right)\) \(e\left(\frac{7}{780}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{427}{780}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{133}{260}\right)\) \(e\left(\frac{191}{780}\right)\) \(e\left(\frac{7}{260}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{176}{195}\right)\) \(e\left(\frac{629}{780}\right)\) \(e\left(\frac{497}{780}\right)\) \(e\left(\frac{107}{195}\right)\)
\(\chi_{38025}(73,\cdot)\) 260 no 1 \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{123}{260}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{229}{260}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{63}{130}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{69}{260}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{197}{260}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{7}{260}\right)\) \(e\left(\frac{257}{260}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{59}{260}\right)\) \(e\left(\frac{111}{260}\right)\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{21}{260}\right)\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{37}{260}\right)\) \(e\left(\frac{37}{65}\right)\)
\(\chi_{38025}(74,\cdot)\) 78 no 1 \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) 1 \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{1}{13}\right)\)