# Properties

 Label 3800.1251 Modulus $3800$ Conductor $152$ Order $18$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3800, base_ring=CyclotomicField(18))

M = H._module

chi = DirichletCharacter(H, M([9,9,0,4]))

pari: [g,chi] = znchar(Mod(1251,3800))

## Basic properties

 Modulus: $$3800$$ Conductor: $$152$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{152}(35,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 3800.cv

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.0.38713951190154487490850848768.1

## Values on generators

$$(951,1901,1977,401)$$ → $$(-1,-1,1,e\left(\frac{2}{9}\right))$$

## First values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$21$$ $$23$$ $$27$$ $$29$$ $$\chi_{ 3800 }(1251, a)$$ $$-1$$ $$1$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{18}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 3800 }(1251,a) \;$$ at $$\;a =$$ e.g. 2