Properties

Label 380.71
Modulus $380$
Conductor $76$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,7]))
 
pari: [g,chi] = znchar(Mod(71,380))
 

Basic properties

Modulus: \(380\)
Conductor: \(76\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{76}(71,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 380.be

\(\chi_{380}(51,\cdot)\) \(\chi_{380}(71,\cdot)\) \(\chi_{380}(91,\cdot)\) \(\chi_{380}(211,\cdot)\) \(\chi_{380}(231,\cdot)\) \(\chi_{380}(371,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{76})^+\)

Values on generators

\((191,77,21)\) → \((-1,1,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 380 }(71, a) \) \(1\)\(1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 380 }(71,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 380 }(71,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 380 }(71,·),\chi_{ 380 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 380 }(71,·)) \;\) at \(\; a,b = \) e.g. 1,2