from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(380, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,17]))
pari: [g,chi] = znchar(Mod(371,380))
Basic properties
Modulus: | \(380\) | |
Conductor: | \(76\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{76}(67,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 380.be
\(\chi_{380}(51,\cdot)\) \(\chi_{380}(71,\cdot)\) \(\chi_{380}(91,\cdot)\) \(\chi_{380}(211,\cdot)\) \(\chi_{380}(231,\cdot)\) \(\chi_{380}(371,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | \(\Q(\zeta_{76})^+\) |
Values on generators
\((191,77,21)\) → \((-1,1,e\left(\frac{17}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 380 }(371, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)