sage: H = DirichletGroup(380)
pari: g = idealstar(,380,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 144 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{380}(191,\cdot)$, $\chi_{380}(77,\cdot)$, $\chi_{380}(21,\cdot)$ |
First 32 of 144 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{380}(1,\cdot)\) | 380.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{380}(3,\cdot)\) | 380.bi | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{380}(7,\cdot)\) | 380.v | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{380}(9,\cdot)\) | 380.bd | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{380}(11,\cdot)\) | 380.q | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{380}(13,\cdot)\) | 380.bh | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{380}(17,\cdot)\) | 380.bg | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{380}(21,\cdot)\) | 380.z | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{380}(23,\cdot)\) | 380.bj | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{380}(27,\cdot)\) | 380.w | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{380}(29,\cdot)\) | 380.bc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{380}(31,\cdot)\) | 380.n | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{380}(33,\cdot)\) | 380.bh | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{380}(37,\cdot)\) | 380.l | 4 | no | \(1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(1\) |
\(\chi_{380}(39,\cdot)\) | 380.h | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{380}(41,\cdot)\) | 380.z | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{380}(43,\cdot)\) | 380.bj | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{380}(47,\cdot)\) | 380.bj | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{380}(49,\cdot)\) | 380.r | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{380}(51,\cdot)\) | 380.be | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{380}(53,\cdot)\) | 380.bh | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{380}(59,\cdot)\) | 380.bb | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{380}(61,\cdot)\) | 380.u | 9 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{380}(63,\cdot)\) | 380.bj | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{380}(67,\cdot)\) | 380.bi | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{380}(69,\cdot)\) | 380.o | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{380}(71,\cdot)\) | 380.be | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{380}(73,\cdot)\) | 380.bg | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{380}(77,\cdot)\) | 380.m | 4 | no | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(i\) | \(-1\) |
\(\chi_{380}(79,\cdot)\) | 380.bb | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{380}(81,\cdot)\) | 380.u | 9 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{380}(83,\cdot)\) | 380.v | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |