sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([258,308]))
pari:[g,chi] = znchar(Mod(999,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(20,\cdot)\)
\(\chi_{3751}(59,\cdot)\)
\(\chi_{3751}(71,\cdot)\)
\(\chi_{3751}(235,\cdot)\)
\(\chi_{3751}(267,\cdot)\)
\(\chi_{3751}(289,\cdot)\)
\(\chi_{3751}(317,\cdot)\)
\(\chi_{3751}(324,\cdot)\)
\(\chi_{3751}(361,\cdot)\)
\(\chi_{3751}(400,\cdot)\)
\(\chi_{3751}(412,\cdot)\)
\(\chi_{3751}(576,\cdot)\)
\(\chi_{3751}(630,\cdot)\)
\(\chi_{3751}(658,\cdot)\)
\(\chi_{3751}(665,\cdot)\)
\(\chi_{3751}(702,\cdot)\)
\(\chi_{3751}(741,\cdot)\)
\(\chi_{3751}(917,\cdot)\)
\(\chi_{3751}(949,\cdot)\)
\(\chi_{3751}(999,\cdot)\)
\(\chi_{3751}(1006,\cdot)\)
\(\chi_{3751}(1043,\cdot)\)
\(\chi_{3751}(1082,\cdot)\)
\(\chi_{3751}(1094,\cdot)\)
\(\chi_{3751}(1258,\cdot)\)
\(\chi_{3751}(1290,\cdot)\)
\(\chi_{3751}(1312,\cdot)\)
\(\chi_{3751}(1347,\cdot)\)
\(\chi_{3751}(1384,\cdot)\)
\(\chi_{3751}(1423,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{43}{55}\right),e\left(\frac{14}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(999, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{86}{165}\right)\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{116}{165}\right)\) | \(e\left(\frac{16}{165}\right)\) |
sage:chi.jacobi_sum(n)