sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(3744, base_ring=CyclotomicField(24))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([12,3,8,12]))
pari: [g,chi] = znchar(Mod(571,3744))
Basic properties
Modulus: | \(3744\) | |
Conductor: | \(3744\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3744.iy
\(\chi_{3744}(259,\cdot)\) \(\chi_{3744}(571,\cdot)\) \(\chi_{3744}(1195,\cdot)\) \(\chi_{3744}(1507,\cdot)\) \(\chi_{3744}(2131,\cdot)\) \(\chi_{3744}(2443,\cdot)\) \(\chi_{3744}(3067,\cdot)\) \(\chi_{3744}(3379,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((703,2341,2081,2017)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{3}\right),-1)\)
Values
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{8}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.0.427553017108046363571330521481482226927833100085081669632.1 |