Properties

Label 3744.365
Modulus $3744$
Conductor $288$
Order $24$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3744)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,21,20,0]))
 
pari: [g,chi] = znchar(Mod(365,3744))
 

Basic properties

Modulus: \(3744\)
Conductor: \(288\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{288}(77,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3744.kb

\(\chi_{3744}(365,\cdot)\) \(\chi_{3744}(677,\cdot)\) \(\chi_{3744}(1301,\cdot)\) \(\chi_{3744}(1613,\cdot)\) \(\chi_{3744}(2237,\cdot)\) \(\chi_{3744}(2549,\cdot)\) \(\chi_{3744}(3173,\cdot)\) \(\chi_{3744}(3485,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((703,2341,2081,2017)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{5}{6}\right),1)\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\(-1\)\(1\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{8}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.1486465269728735333725176976133731985582456832.1