Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 373 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 372 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 373.l |
Orbit index | = | 12 |
Galois orbit
\(\chi_{373}(2,\cdot)\) \(\chi_{373}(5,\cdot)\) \(\chi_{373}(6,\cdot)\) \(\chi_{373}(11,\cdot)\) \(\chi_{373}(14,\cdot)\) \(\chi_{373}(15,\cdot)\) \(\chi_{373}(24,\cdot)\) \(\chi_{373}(26,\cdot)\) \(\chi_{373}(32,\cdot)\) \(\chi_{373}(34,\cdot)\) \(\chi_{373}(35,\cdot)\) \(\chi_{373}(42,\cdot)\) \(\chi_{373}(43,\cdot)\) \(\chi_{373}(44,\cdot)\) \(\chi_{373}(47,\cdot)\) \(\chi_{373}(53,\cdot)\) \(\chi_{373}(54,\cdot)\) \(\chi_{373}(57,\cdot)\) \(\chi_{373}(60,\cdot)\) \(\chi_{373}(61,\cdot)\) \(\chi_{373}(62,\cdot)\) \(\chi_{373}(65,\cdot)\) \(\chi_{373}(72,\cdot)\) \(\chi_{373}(76,\cdot)\) \(\chi_{373}(77,\cdot)\) \(\chi_{373}(78,\cdot)\) \(\chi_{373}(79,\cdot)\) \(\chi_{373}(80,\cdot)\) \(\chi_{373}(82,\cdot)\) \(\chi_{373}(85,\cdot)\) ...
Values on generators
\(2\) → \(e\left(\frac{35}{372}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(-1\) | \(1\) | \(e\left(\frac{35}{372}\right)\) | \(e\left(\frac{73}{186}\right)\) | \(e\left(\frac{35}{186}\right)\) | \(e\left(\frac{335}{372}\right)\) | \(e\left(\frac{181}{372}\right)\) | \(e\left(\frac{39}{62}\right)\) | \(e\left(\frac{35}{124}\right)\) | \(e\left(\frac{73}{93}\right)\) | \(e\left(\frac{185}{186}\right)\) | \(e\left(\frac{19}{372}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{372})\) |