# Properties

 Label 3724.1697 Modulus $3724$ Conductor $133$ Order $18$ Real no Primitive no Minimal no Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3724, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,3,14]))

pari: [g,chi] = znchar(Mod(1697,3724))

## Basic properties

 Modulus: $$3724$$ Conductor: $$133$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{133}(101,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 3724.cs

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.0.1369393352927188877370217151752183.1

## Values on generators

$$(1863,3041,3137)$$ → $$(1,e\left(\frac{1}{6}\right),e\left(\frac{7}{9}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$23$$ $$25$$ $$27$$ $$-1$$ $$1$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$1$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$
 value at e.g. 2