Properties

Label 36864.1021
Modulus $36864$
Conductor $36864$
Order $3072$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(36864, base_ring=CyclotomicField(3072)) M = H._module chi = DirichletCharacter(H, M([0,1257,1024]))
 
Copy content pari:[g,chi] = znchar(Mod(1021,36864))
 

Basic properties

Modulus: \(36864\)
Conductor: \(36864\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(3072\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 36864.di

\(\chi_{36864}(13,\cdot)\) \(\chi_{36864}(61,\cdot)\) \(\chi_{36864}(85,\cdot)\) \(\chi_{36864}(133,\cdot)\) \(\chi_{36864}(157,\cdot)\) \(\chi_{36864}(205,\cdot)\) \(\chi_{36864}(229,\cdot)\) \(\chi_{36864}(277,\cdot)\) \(\chi_{36864}(301,\cdot)\) \(\chi_{36864}(349,\cdot)\) \(\chi_{36864}(373,\cdot)\) \(\chi_{36864}(421,\cdot)\) \(\chi_{36864}(445,\cdot)\) \(\chi_{36864}(493,\cdot)\) \(\chi_{36864}(517,\cdot)\) \(\chi_{36864}(565,\cdot)\) \(\chi_{36864}(589,\cdot)\) \(\chi_{36864}(637,\cdot)\) \(\chi_{36864}(661,\cdot)\) \(\chi_{36864}(709,\cdot)\) \(\chi_{36864}(733,\cdot)\) \(\chi_{36864}(781,\cdot)\) \(\chi_{36864}(805,\cdot)\) \(\chi_{36864}(853,\cdot)\) \(\chi_{36864}(877,\cdot)\) \(\chi_{36864}(925,\cdot)\) \(\chi_{36864}(949,\cdot)\) \(\chi_{36864}(997,\cdot)\) \(\chi_{36864}(1021,\cdot)\) \(\chi_{36864}(1069,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{3072})$
Fixed field: Number field defined by a degree 3072 polynomial (not computed)

Values on generators

\((8191,20485,4097)\) → \((1,e\left(\frac{419}{1024}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 36864 }(1021, a) \) \(1\)\(1\)\(e\left(\frac{233}{3072}\right)\)\(e\left(\frac{749}{1536}\right)\)\(e\left(\frac{1501}{3072}\right)\)\(e\left(\frac{2183}{3072}\right)\)\(e\left(\frac{149}{256}\right)\)\(e\left(\frac{37}{1024}\right)\)\(e\left(\frac{1183}{1536}\right)\)\(e\left(\frac{233}{1536}\right)\)\(e\left(\frac{2803}{3072}\right)\)\(e\left(\frac{25}{384}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 36864 }(1021,a) \;\) at \(\;a = \) e.g. 2