sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(36864, base_ring=CyclotomicField(3072))
M = H._module
chi = DirichletCharacter(H, M([0,1257,1024]))
pari:[g,chi] = znchar(Mod(1021,36864))
| Modulus: | \(36864\) | |
| Conductor: | \(36864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(3072\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{36864}(13,\cdot)\)
\(\chi_{36864}(61,\cdot)\)
\(\chi_{36864}(85,\cdot)\)
\(\chi_{36864}(133,\cdot)\)
\(\chi_{36864}(157,\cdot)\)
\(\chi_{36864}(205,\cdot)\)
\(\chi_{36864}(229,\cdot)\)
\(\chi_{36864}(277,\cdot)\)
\(\chi_{36864}(301,\cdot)\)
\(\chi_{36864}(349,\cdot)\)
\(\chi_{36864}(373,\cdot)\)
\(\chi_{36864}(421,\cdot)\)
\(\chi_{36864}(445,\cdot)\)
\(\chi_{36864}(493,\cdot)\)
\(\chi_{36864}(517,\cdot)\)
\(\chi_{36864}(565,\cdot)\)
\(\chi_{36864}(589,\cdot)\)
\(\chi_{36864}(637,\cdot)\)
\(\chi_{36864}(661,\cdot)\)
\(\chi_{36864}(709,\cdot)\)
\(\chi_{36864}(733,\cdot)\)
\(\chi_{36864}(781,\cdot)\)
\(\chi_{36864}(805,\cdot)\)
\(\chi_{36864}(853,\cdot)\)
\(\chi_{36864}(877,\cdot)\)
\(\chi_{36864}(925,\cdot)\)
\(\chi_{36864}(949,\cdot)\)
\(\chi_{36864}(997,\cdot)\)
\(\chi_{36864}(1021,\cdot)\)
\(\chi_{36864}(1069,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,20485,4097)\) → \((1,e\left(\frac{419}{1024}\right),e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 36864 }(1021, a) \) |
\(1\) | \(1\) | \(e\left(\frac{233}{3072}\right)\) | \(e\left(\frac{749}{1536}\right)\) | \(e\left(\frac{1501}{3072}\right)\) | \(e\left(\frac{2183}{3072}\right)\) | \(e\left(\frac{149}{256}\right)\) | \(e\left(\frac{37}{1024}\right)\) | \(e\left(\frac{1183}{1536}\right)\) | \(e\left(\frac{233}{1536}\right)\) | \(e\left(\frac{2803}{3072}\right)\) | \(e\left(\frac{25}{384}\right)\) |
sage:chi.jacobi_sum(n)