![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(368, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,33,20]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(368, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,33,20]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(285,368))
        pari:[g,chi] = znchar(Mod(285,368))
         
     
    
  
   | Modulus: | \(368\) |  | 
   | Conductor: | \(368\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(44\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{368}(13,\cdot)\)
  \(\chi_{368}(29,\cdot)\)
  \(\chi_{368}(77,\cdot)\)
  \(\chi_{368}(85,\cdot)\)
  \(\chi_{368}(101,\cdot)\)
  \(\chi_{368}(117,\cdot)\)
  \(\chi_{368}(133,\cdot)\)
  \(\chi_{368}(141,\cdot)\)
  \(\chi_{368}(165,\cdot)\)
  \(\chi_{368}(173,\cdot)\)
  \(\chi_{368}(197,\cdot)\)
  \(\chi_{368}(213,\cdot)\)
  \(\chi_{368}(261,\cdot)\)
  \(\chi_{368}(269,\cdot)\)
  \(\chi_{368}(285,\cdot)\)
  \(\chi_{368}(301,\cdot)\)
  \(\chi_{368}(317,\cdot)\)
  \(\chi_{368}(325,\cdot)\)
  \(\chi_{368}(349,\cdot)\)
  \(\chi_{368}(357,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((47,277,97)\) → \((1,-i,e\left(\frac{5}{11}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 368 }(285, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)