# Properties

 Label 368.91 Modulus $368$ Conductor $368$ Order $4$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(368, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([2,1,2]))

pari: [g,chi] = znchar(Mod(91,368))

## Basic properties

 Modulus: $$368$$ Conductor: $$368$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 368.i

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.1083392.2

## Values on generators

$$(47,277,97)$$ → $$(-1,i,-1)$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$7$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$19$$ $$21$$ $$1$$ $$1$$ $$i$$ $$-i$$ $$-1$$ $$-1$$ $$i$$ $$-i$$ $$1$$ $$-1$$ $$-i$$ $$-i$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 368 }(91,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{368}(91,\cdot)) = \sum_{r\in \Z/368\Z} \chi_{368}(91,r) e\left(\frac{r}{184}\right) = 0.0$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 368 }(91,·),\chi_{ 368 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{368}(91,\cdot),\chi_{368}(1,\cdot)) = \sum_{r\in \Z/368\Z} \chi_{368}(91,r) \chi_{368}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 368 }(91,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{368}(91,·)) = \sum_{r \in \Z/368\Z} \chi_{368}(91,r) e\left(\frac{1 r + 2 r^{-1}}{368}\right) = 20.4411056689+-8.466983198i$$