# Properties

 Label 363.f Modulus $363$ Conductor $33$ Order $10$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(363, base_ring=CyclotomicField(10))

M = H._module

chi = DirichletCharacter(H, M([5,7]))

chi.galois_orbit()

[g,chi] = znchar(Mod(161,363))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$363$$ Conductor: $$33$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$10$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 33.f sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{5})$$ Fixed field: $$\Q(\zeta_{33})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$13$$ $$14$$ $$16$$ $$17$$
$$\chi_{363}(161,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$-1$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{363}(215,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$-1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{363}(233,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$-1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{363}(239,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$-1$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$