Properties

Label 363.61
Modulus $363$
Conductor $121$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,109]))
 
Copy content pari:[g,chi] = znchar(Mod(61,363))
 

Basic properties

Modulus: \(363\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 363.o

\(\chi_{363}(7,\cdot)\) \(\chi_{363}(13,\cdot)\) \(\chi_{363}(19,\cdot)\) \(\chi_{363}(28,\cdot)\) \(\chi_{363}(46,\cdot)\) \(\chi_{363}(52,\cdot)\) \(\chi_{363}(61,\cdot)\) \(\chi_{363}(73,\cdot)\) \(\chi_{363}(79,\cdot)\) \(\chi_{363}(85,\cdot)\) \(\chi_{363}(106,\cdot)\) \(\chi_{363}(127,\cdot)\) \(\chi_{363}(139,\cdot)\) \(\chi_{363}(145,\cdot)\) \(\chi_{363}(151,\cdot)\) \(\chi_{363}(160,\cdot)\) \(\chi_{363}(172,\cdot)\) \(\chi_{363}(178,\cdot)\) \(\chi_{363}(184,\cdot)\) \(\chi_{363}(193,\cdot)\) \(\chi_{363}(205,\cdot)\) \(\chi_{363}(211,\cdot)\) \(\chi_{363}(217,\cdot)\) \(\chi_{363}(226,\cdot)\) \(\chi_{363}(238,\cdot)\) \(\chi_{363}(244,\cdot)\) \(\chi_{363}(250,\cdot)\) \(\chi_{363}(259,\cdot)\) \(\chi_{363}(271,\cdot)\) \(\chi_{363}(277,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((122,244)\) → \((1,e\left(\frac{109}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 363 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{109}{110}\right)\)\(e\left(\frac{54}{55}\right)\)\(e\left(\frac{18}{55}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{9}{110}\right)\)\(e\left(\frac{51}{55}\right)\)\(e\left(\frac{53}{55}\right)\)\(e\left(\frac{61}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 363 }(61,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 363 }(61,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 363 }(61,·),\chi_{ 363 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 363 }(61,·)) \;\) at \(\; a,b = \) e.g. 1,2