sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,21]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(101,363))
         
     
    
  
   | Modulus: |  \(363\) |   |  
   | Conductor: |  \(363\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(110\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{363}(2,\cdot)\)
  \(\chi_{363}(8,\cdot)\)
  \(\chi_{363}(17,\cdot)\)
  \(\chi_{363}(29,\cdot)\)
  \(\chi_{363}(35,\cdot)\)
  \(\chi_{363}(41,\cdot)\)
  \(\chi_{363}(50,\cdot)\)
  \(\chi_{363}(62,\cdot)\)
  \(\chi_{363}(68,\cdot)\)
  \(\chi_{363}(74,\cdot)\)
  \(\chi_{363}(83,\cdot)\)
  \(\chi_{363}(95,\cdot)\)
  \(\chi_{363}(101,\cdot)\)
  \(\chi_{363}(107,\cdot)\)
  \(\chi_{363}(116,\cdot)\)
  \(\chi_{363}(128,\cdot)\)
  \(\chi_{363}(134,\cdot)\)
  \(\chi_{363}(140,\cdot)\)
  \(\chi_{363}(149,\cdot)\)
  \(\chi_{363}(167,\cdot)\)
  \(\chi_{363}(173,\cdot)\)
  \(\chi_{363}(182,\cdot)\)
  \(\chi_{363}(194,\cdot)\)
  \(\chi_{363}(200,\cdot)\)
  \(\chi_{363}(206,\cdot)\)
  \(\chi_{363}(227,\cdot)\)
  \(\chi_{363}(248,\cdot)\)
  \(\chi_{363}(260,\cdot)\)
  \(\chi_{363}(266,\cdot)\)
  \(\chi_{363}(272,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((122,244)\) → \((-1,e\left(\frac{21}{110}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |       
    
    
      | \( \chi_{ 363 }(101, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{37}{110}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)