sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,0,2,9]))
pari:[g,chi] = znchar(Mod(1343,3600))
\(\chi_{3600}(1343,\cdot)\)
\(\chi_{3600}(2207,\cdot)\)
\(\chi_{3600}(2543,\cdot)\)
\(\chi_{3600}(3407,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3151,901,2801,577)\) → \((-1,1,e\left(\frac{1}{6}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3600 }(1343, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)