Properties

Label 3600.7
Modulus $3600$
Conductor $360$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,8,3]))
 
pari: [g,chi] = znchar(Mod(7,3600))
 

Basic properties

Modulus: \(3600\)
Conductor: \(360\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{360}(187,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3600.cy

\(\chi_{3600}(7,\cdot)\) \(\chi_{3600}(1543,\cdot)\) \(\chi_{3600}(2407,\cdot)\) \(\chi_{3600}(2743,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.22039921152000000000.1

Values on generators

\((3151,901,2801,577)\) → \((-1,-1,e\left(\frac{2}{3}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3600 }(7, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(i\)\(-1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3600 }(7,a) \;\) at \(\;a = \) e.g. 2