from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,6,8,3]))
pari: [g,chi] = znchar(Mod(7,3600))
Basic properties
Modulus: | \(3600\) | |
Conductor: | \(360\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{360}(187,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3600.cy
\(\chi_{3600}(7,\cdot)\) \(\chi_{3600}(1543,\cdot)\) \(\chi_{3600}(2407,\cdot)\) \(\chi_{3600}(2743,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.12.22039921152000000000.1 |
Values on generators
\((3151,901,2801,577)\) → \((-1,-1,e\left(\frac{2}{3}\right),i)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3600 }(7, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
sage: chi.jacobi_sum(n)