from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,45,40,48]))
pari: [g,chi] = znchar(Mod(61,3600))
Basic properties
Modulus: | \(3600\) | |
Conductor: | \(3600\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3600.ga
\(\chi_{3600}(61,\cdot)\) \(\chi_{3600}(421,\cdot)\) \(\chi_{3600}(661,\cdot)\) \(\chi_{3600}(781,\cdot)\) \(\chi_{3600}(1021,\cdot)\) \(\chi_{3600}(1141,\cdot)\) \(\chi_{3600}(1381,\cdot)\) \(\chi_{3600}(1741,\cdot)\) \(\chi_{3600}(1861,\cdot)\) \(\chi_{3600}(2221,\cdot)\) \(\chi_{3600}(2461,\cdot)\) \(\chi_{3600}(2581,\cdot)\) \(\chi_{3600}(2821,\cdot)\) \(\chi_{3600}(2941,\cdot)\) \(\chi_{3600}(3181,\cdot)\) \(\chi_{3600}(3541,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((3151,901,2801,577)\) → \((1,-i,e\left(\frac{2}{3}\right),e\left(\frac{4}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3600 }(61, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) |
sage: chi.jacobi_sum(n)